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where 

e(x,$) = + l for xA<xi 

= - 1 for &<%\ ^ ' ' 

Because of the infinite integrations in Eq. (3.6), it is 
clear that the additional term is either zero or infinite for 
a periodic motion of the system. Thus, for periodic 
motions the Frenkel 4-momentum either coincides with 
the canonical 4-momentum or gives infinite results. In 
our case of point charges in circular motion, the right-

I. INTRODUCTION 

FEW problems of physics have received more atten­
tion in the past than those posed by the dual wave-

particle properties of light. The story of the solution of 
these problems is a familiar one. It has culminated in 
the development of a remarkably versatile quantum 
theory of the electromagnetic field. Yet, for reasons 
which are partly mathematical and partly, perhaps, the 
accident of history, very little of the insight of quantum 
electrodynamics has been brought to bear on the 
problems of optics. The statistical properties of photon 
beams, for example, have been discussed to date almost 
exclusively in classical or semiclassical terms. Such 
discussions may indeed be informative, but they in­
evitably leave open serious questions of self-consistency, 
and risk overlooking quantum phenomena which have 
no classical analogs. The wave-particle duality, which 
should be central to any correct treatment of photon 
statistics, does not survive the transition to the classical 
limit. The need for a more consistent theory has led us 

* Supported in part by the U. S. Air Force Office of Scientific 
Research under Contract No. AF 49 (638)-589. 

hand side of Eq. (3.6) vanishes, so that the Frenkel 
4-momentum also leads to the energy given by Eq. (3.4). 

Our system, characterized by Eqs. (3.1) to (3.5), can 
now be quantized by putting L—nh. For either posi-
tronium (e electronic charge, m=m electron mass) or 
hydrogen (e, m electronic charge and mass, m proton 
mass), the resulting quantized motions are all nonrela-
tivistic. They are the usual Bohr motions with small 
corrections for retardation and other relativistic effects 
and, in the case of hydrogen, with small corrections for 
the motion of the nucleus. 

to begin the development of a fully quantum-mechanical 
approach to the problems of photon statistics. We have 
quoted several of the results of this work in a recent 
note,1 and shall devote much of the present paper to 
explaining the background of the material reported 
there. 

Most of the mathematical development of quantum 
electrodynamics to date has been carried out through 
the use of a particular set of quantum states for the 
field. These are the stationary states of the non-
interacting field, which corresponds to the presence of 
a precisely defined number of photons. The need to use 
these states has seemed almost axiomatic inasmuch as 
nearly all quantum electrodynamical calculations have 
been carried out by means of perturbation theory. It is 
characteristic of electrodynamical perturbation theory 
that in each successive order of approximation it 
describes processes which either increase or decrease 
the number of photons present by one. Calculations 
performed by such methods have only rarely been able 
to deal with more than a few photons at a time. The 

1 R. J. Glauber, Phys. Rev. Letters 10, 84 (1963). 
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Methods are developed for discussing the photon statistics of arbitrary radiation fields in fully quantum-
mechanical terms. In order to keep the classical limit of quantum electrodynamics plainly in view, extensive 
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they are not orthogonal to one another, the coherent states form a complete set. It is shown that any quan­
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for arbitrary operators in terms of products of the coherent state vectors. These expansions are discussed as a 
general method of representing the density operator for the field. A particular form is exhibited for the 
density operator which makes it possible to carry out many quantum-mechanical calculations by methods 
resembling those of classical theory. This representation permits clear insights into the essential distinction 
between the quantum and classical descriptions of the field. It leads, in addition, to a simple formulation 
of a superposition law for photon fields. Detailed discussions are given of the incoherent fields which are 
generated by superposing the outputs of many stationary sources. These fields are all shown to have inti­
mately related properties, some of which have been known for the particular case of blackbody radiation. 
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description of the light beams which occur in optics, on 
the other hand, may require that we deal with states in 
which the number of photons present is large and in­
trinsically uncertain. I t has long been clear that the use 
of the usual set of photon states as a basis offers at best 
only an awkward way of approaching such problems. 

We have found that the use of a rather different set 
of states, one which arises in a natural way in the 
discussion of correlation and coherence2,3 properties of 
fields, offers much more penetrating insights into the 
role played by photons in the description of light beams. 
These states, wThich we have called coherent ones, are 
of a type that has long been used to illustrate the time-
dependent behavior of harmonic oscillators. Since they 
lack the convenient property of forming an orthogonal 
set, very little attention has been paid them as a set of 
basis states for the description of fields. We shall show 
that these states, though not orthogonal, do form a com­
plete set and that any state of the field may be represented 
simply and uniquely in terms of them. By suitably 
extending the methods used to express arbitrary states 
in terms of the coherent states, we may express arbitrary 
operators in terms of products of the corresponding 
state vectors. I t is particularly convenient to express 
the density operator for the field in an expansion of this 
type. Such expansions have the property that whenever 
the field possesses a classical limit, they render that 
limit evident while at the same time preserving an 
intrinsically quantum-mechanical description of the 
field. 

The earlier sections of the paper are devoted to a 
detailed introduction of the coherent states and a survey 
of some of their properties. We then undertake in Sees. 
IV and V the expansion of arbitrary states and operators 
in terms of the coherent states. Section VI is devoted to 
a discussion of the particular properties of density 
operators and the way these properties are represented 
in the new scheme. The application of the formalism to 
physical problems is begun in Sec. VII, where we intro­
duce a particular form for the density operator which 
seems especially suited to the treatment of radiation by 
macroscopic sources. This form for the density operator 
leads to a particularly simple way of describing the 
superposition of radiation fields. A form of the density 
operator which corresponds to a very commonly 
occurring form of incoherence is then discussed in 
Sec. VII I and shown to be closely related to the density 
operator for blackbody radiation. In Sec. I X the results 
established earlier for the treatment of single modes of 
the radiation field are generalized to treat the entire 
field. The photon fields generated by arbitrary distribu­
tions of classical currents are shown to have an especi­
ally simple description in terms of coherent states. 
Finally, in Sec. X the methods of the preceding sections 

2 R. J. Glauber, in Proceedings of the Third International 
Conference on Quantum Electronics, Paris, France, 1963 (to be 
published). 

3 R. J. Glauber, Phys. Rev. 130, 2529 (1963). 
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are illustrated in a discussion of certain forms of 
coherent and incoherent fields and of their spectra and 
correlation functions. 

II. FIELD-THEORETICAL BACKGROUND 

We have, in an earlier paper,3 discussed the separation 
of the electric field operator E(r/) into its positive-
frequency part E ( + )(r/) and its negative-frequency part 
E ( - ) (rt). These individual fields were then used to define 
a succession of correlation functions G(n\ the simplest 
of which takes the form 

<?„,<» for'/') = tr{PZy-> (tt)E,™ (r'/ ')>, (2.1) 

where p is the density operator which describes the field 
and the symbol tr stands for the trace. We noted, in 
discussing these functions, that there exist quantum-
mechanical states which are eigenstates of the positive-
and negative-frequency parts of the fields in the senses 
indicated by the relations 

£„<+)(«)!>= 5M(r/)| >, (2.2) 

<|V->(rf)=S/(rt)<l, (2.3) 

in which the function £M(r/) plays the role of an eigen­
value. I t is possible, as we shall note, to find eigenstates 
| ) which correspond to arbitrary choices of the eigen­
value function S^{tt), provided they obey the Maxwell 
equations satisfied by the field operator E^xt) and 
contain only positive frequency terms in their Fourier 
resolutions. 

The importance of the eigenstates defined by Eqs. 
(2.2) and (2.3) is indicated by the fact that they cause 
the correlation functions to factorize. If the field is in 
an eigenstate of this type we have p= | )( |, and the 
first-order correlation function therefore reduces to 

G^Kitfn^SSWStft'). (2.4) 

An analogous separation into a product of 2n factors 
takes place in the nth- order correlation function. The 
existence of such factorized forms for the correlation 
functions is the condition we have used to define fully 
coherent fields. The eigenstates | ), which we have 
therefore called the coherent states, have many prop­
erties which it will be interesting to study in detail. For 
this purpose, it will be useful to introduce some of the 
more directly related elements of quantum electro­
dynamics. 

The electric and magnetic field operators E(rt) and 
B(rt) may be derived from the operator A(rt), which 
represents the vector potential, via the relations 

I d A 
E = , B = V X A . (2.5) 

c dt 

We shall find it convenient, in discussing the quantum 
states of the field, to describe the field by means of a 
discrete succession of dynamical variables rather than 
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a continuum of them. For this reason we assume that 
the field we are discussing is confined within a spatial 
volume of finite size, and expand the vector potential 
within that volume in an appropriate set of vector mode 
functions. The amplitudes associated with these 
oscillation modes then form a discrete set of variables 
whose dynamical behavior is easily discussed. 

The most convenient choice of a set of mode func­
tions, Ufc(r), is usually determined by physical considera­
tions which have little direct bearing on our present 
work. In particular, we need not specify the nature of 
the boundary conditions for the volume under study; 
they may be either the periodic boundary conditions 
which lead to traveling wave modes, or the conditions 
appropriate to reflecting surfaces which lead to standing 
waves. If the volume contains no refracting materials, 
the mode function Ufc(r), which corresponds to fre­
quency a)k, may be taken to satisfy the wave equation 

V2nk+—uk=0 (2.6) 
c2 

at interior points. More generally, whatever the form 
of the wave equation or the boundary conditions may 
be, we shall assume that the mode functions form a 
complete set which satisfies the orthonormality condi­
tion 

/ Uk*(r)'Ui(t)dt=8ki, (2.7) 

and the transversality condition 

V.u*(r) = 0. (2.8) 

The plane-wave mode functions appropriate to a 
cubical volume of side L may be written as 

ujb(r) = Z r^< x > exp(ik-r) , (2.9) 

where e(X) is a unit polarization vector. This example 
illustrates the way in which the mode index k may 
represent an abbreviation for several discrete variables, 
i.e., in this case the polarization index (\ = 1,2) and the 
three Cartesian components of the propagation vector 
k. The polarization vector e(X) is required to be perpen­
dicular to k by the condition (2.8), and the permissible 
values of k are determined in a familiar way by means 
of periodic boundary conditions. 

The expansion we shall use for the vector potential 
takes the form 

/ ft \l>2 

A(r*) = * £ ( — ) 
k \2co/c/ 

X ( ^ u , ( r ) e - - ^ + a , W ( r ) g ^ O , (2.10) 

in which the normalization factors have been chosen to 
render dimensionless the pair of complex-conjugate 
amplitudes ak and ak

f. In the classical form of electro­

magnetic theory these Fourier amplitudes are complex 
numbers which may be chosen arbitrarily but remain 
constant in time when no charges or currents are 
present. In quantum electrodynamics, on the other 
hand, these amplitudes must be regarded as mutually 
adjoint operators. The amplitude operators, as we have 
defined them, will likewise remain constant when no 
field sources are active in the system studied. 

The dynamical behavior of the field amplitudes is 
governed by the electromagnetic Hamiltonian which, 
in rationalized units, takes the form 

ff=§ f(&+W)dt. (2.11) 

With the use of Eqs. (2.7,8) and of a suitable set of 
boundary conditions on the mode functions, the 
Hamiltonian may be reduced to the form 

B=i L fiwkiajak+akaj). (2.12) 

This expression is the source of a well-known and 
extremely fruitful analogy between the mode ampli­
tudes of the field and the coordinates of an assembly of 
one-dimensional harmonic oscillators. The quantum 
mechanical properties of the amplitude operators ak 
and a^ may be described completely by adopting for 
them the commutation relations familiar from the 
example of independent harmonic oscillators: 

[ak,ak>2 - D^V*'1"] = 0, (2.13a) 

[a*,a*' t]=8**'. (2.13b) 

Having thus separated the dynamical variables of the 
different modes, we are now free to discuss the quantum 
states of the modes independently of one another. Our 
knowledge of the state of each mode may be described 
by a state vector | )* in a Hilbert space appropriate to 
that mode. The states of the entire field are then defined 
in the product space of the Hilbert spaces for all of the 
modes. 

To discuss the quantum states of the individual 
modes we need only be familiar with the most elemen­
tary aspects of the treatment of a single harmonic 
oscillator. The Hamiltonian ^hukia^ak+akaj) has 
eigenvalues hwk(nk+i), where Uk is an integer 
(n/c = 0,l,2 • • •)• The state vector for the ground state 
of the oscillator will be written as | ) k . I t is defined by 
the condition 

0*|O>* = O. (2.14) 

The state vectors for the excited states of the oscillator 
may be obtained by applying integral powers of the 
operator a^ to 10)&. These states are written in normal­
ized form as 

\nk)k = 10}*, ( ^ = 0 , 1 , 2 • • • ) . (2.15) 
(w/d)1/2 
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The way in which the operators ak and a^ act upon 
these states is indicated by the relations 

ak | nk)k = nk
l/2 \ nk—1)&, (2.16) 

fl*t|»*>=(»*+l)1/2|»*+l>t, (2.17) 

ak
fak\nk) = nk\nk). (2.18) 

With these preliminaries completed we are now ready 
to discuss the coherent states of the field in greater 
detail. The expansion (2.10) for the vector potential 
exhibits its positive frequency part as the sum contain­
ing the photon annihilation operators ak and its negative 
frequency part as that involving the creation operators 
ak

f. The positive frequency part of the electric field 
operator is thus given, according to (2.10), by 

E<+> (r/) = i Z (^k)
ll2akuk(r)*-'"". 

k 
(2.19) 

The eigenvalue functions £(r/) defined by Eq. (2.2) 
must clearly satisfy the Maxwell equations, just as the 
operator E ( + )(r/) does. They therefore possess an 
expansion in normal modes similar to Eq. (2.19). In 
other words we may introduce a set of c-number Fourier 
coefficients ak which permit us to write the eigenvalue 
function as 

k 
(2.20) 

Since the mode functions Uyt(r) form an orthogonal set, 
it then follows that the eigenstate | ) for the field obeys 
the infinite succession of relations 

ak\ )=<xk\ ) , (2.21) 

for all modes k. To find the states which satisfy these 
relations we seek states, \ak)k, of the individual modes 
which individually obey the relations 

ak\ak)k=a.h\oLk)k. (2.22) 

The coherent states | ) of the field, considered as a 
whole, are then seen to be direct products of the 
individual states \ak), 

k 
(2.23) 

III. COHERENT STATES OF A SINGLE MODE 

The next few sections will be devoted to discussing 
the description of a single mode oscillator. We may 
therefore simplify the notation a bit by dropping the 
mode index k as a subscript to the state vector and to 
the amplitude parameters and operators. To find the 
oscillator state \a) which satisfies 

a\a)=a\a), (3.1) 

we begin by taking the scalar product of both sides of 
the equation with the nth. excited state, (n\. By using 
the Hermitian adjoint form of the relation (2.17), we 

find the recursion relation 

(n+ l)1,2(n+11 a)=a(n \ a) (3.2) 

for the scalar products (n\a). We immediately find from 
the recursion relation that 

(n\a) = 
(n !)i/2 

• < 0 | « > . (3.3) 

These scalar products are the expansion coefficients of 
the state \a) in terms of the complete orthonormal set 
\n) (n=Q, 1, • • •). We thus have 

|a) = ]£ \n){n\a) 

=<ok>x;- — In). 

The squared length of the vector \a) is thus 

<«!«>= | < 0 | a ) | » Z - " 

(3.4) 

n %! 

= | (0 | a ) |V« l 2 . (3.5) 

If the state \a) is normalized so that (a\a)= 1 we may 
evidently define its phase by choosing 

<0|«>=e-^l«l i (3.6) 

The coherent states of the oscillator therefore take the 
forms 

x) = tf-il«l»£. 

and 
n (nl)112 

n) 

(a = e- i l«l2X;- —<n|. 
« (w!)1/2 

(3.7) 

(3.8) 

These forms show that the average occupation number 
of the nth state is given by a Poisson distribution with 
mean value | a \2, 

\a\2n 

| (» |a> | 2 = e~^\ (3.9) 
nl 

They also show that the coherent state \a) correspond­
ing to a=0 is the unique ground state of the oscillator, 
i.e., the state \n) for n=0. 

An alternative approach to the coherent states will 
also prove quite useful in the work to follow. For this 
purpose we assume that there exists a unitary operator 
D which acts as a displacement operator upon the 
amplitudes a1* and a. We let D be a function of a complex 
parameter /?, and require that it displace the amplitude 
operators according to the scheme 

Zr1(/5)a+Z)(i3) = a++/3*. 

(3.10) 

(3.11) 
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Then if \a) obeys Eq. (3.1), it follows that D~l(P) \a) is 
an eigenstate of a corresponding to the eigenvalue a—ft, 

aD-mW)= (a-(3)D-m \a). (3.12) 

In particular, if we choose 0=a, we find 

aD~1(a)\a) = 0. 

Since the ground state of the oscillator is uniquely 
defined by the relation (2.14), it follows that D~l(a) \a) 
is just the ground state, |0). The coherent states, in 
other words, are just displaced forms of the ground 
state of the oscillator, 

| a > = D ( a ) | 0 ) . (3.13) 

To find an explicit form for the displacement operator 
D(a), we begin by considering infinitesimal displace­
ments in the neighborhood of D(0) = 1. For arbitrary 
displacements da, we see easily from the commutation 
rules (2.13) that D(da) may be chosen to have the form 

D(da) = l+a*da-ada*, (3.14) 

which holds to first order in da. To formulate a simple 
differential equation obeyed by the unknown operator 
we consider increments of a of the form da—ad\ where 
X is a real parameter. Then if we assume the operators D 
to possess the group multiplication property 

D(a(\+d\)) = D(adX)D(a\), (3.15) 

we find the differential equation 

d 
—D(aK)= (aa*-a*a)D(a\), (3.16) 
d\ 

whose solution, evaluated for X = l , is the unitary 
operator 

D(a) = e«a*-«*a. (3.17) 

The coherent states \a) may therefore be written in the 
form 

| a)=6««t-«*«|o) (3.18) 

which is correctly normalized since D(a) is unitary. 
I t is interesting to discuss the relationship between 

the two forms we have derived for the coherent states. 
For this purpose we invoke a simple theorem on the 
multiplication of exponential functions of operators. 
If d and (B are any two operators, whose commutator 
£($,<B] commutes with each of them, 

[[a,(B],a]=[[a,(B],(B]=o, (3.19) 
it may be shown4 that 

exp(a) e x p ( ( B ) - e x p { a + ( B + | [ a , ( B ] } . (3.20) 

If we write (£=a f and (B = #, this theorem permits us 
to resolve the exponential D(a) given by Eq. (3.17) into 

4 A. Messiah, Quantum Mechanics (North-Holland Publishing 
Company, Amsterdam, 1961), Vol. I, p. 442. 

the product 

Z)(a) = er*MV°V- a* a . (3.21) 

Products of this type, which have been ordered so that 
the annihilation operators all stand to the right of the 
creation operators, will be said to be in normal form. 
Their convenience is indicated by the fact that the 
exponential exp£—a*a], when applied to the ground 
state |0), reduces in effect to unity, i.e., we have 

e-«*«|0>=|0>, (3.22) 

since the exponential may be expanded in series and 
the definition (2.14) of the ground state applied. I t 
follows then that the coherent states may be written as 

\a) = D(a)\0 

= 6r*l«lV f l t|0> (3.23) 

(adY 

n fl\ 

Since the excited states of the oscillator are given by 
\n)= (^!)~1/2(a t)w |0), we have once again derived the 
expression 

|a> = < r * l « l»£H»> . 
n n\ 

I t may help in visualizing the coherent states if we 
discuss the form they take in coordinate space and in 
momentum space. We therefore introduce a pair of 
Hermitian operators q and p to represent, respectively, 
the coordinate of the mode oscillator and its momentum. 
These operators, which must satisfy the canonical 
commutation relation, \jq,p'2 = ^ m a y be defined for 
our purposes by the familiar expressions 

g=(* /2w) 1 / 2 (a t +a) , (3.25a) 

p=i(^/2y'2(a^-a). (3.25b) 

To find the expectation value of q and p in the coherent 
states we need only use Eq. (3.1), which defines these 
states, and its corresponding Hermitian adjoint form. 
We have then 

(a\q\a)=(2fi/o)y^Rea, (3.26a) 

(a\p\a)=(2^y^lma, (3.26b) 

where Re a and Im a stand for the real and imaginary 
parts of a. 

To find the wave functions for the coherent states, 
we write the defining equation (3.1) in the form 

{2ha>)-^(o>q+ip)\a)=a\a), (3.27) 

and take the scalar product of both members with the 
conjugate state (q'\, which corresponds to the eigen­
value qr for q. Since the momentum may be represented 
by a derivative operator, i.e., {q'\p— —iti(d/dq')(q' \, we 
find that the coordinate space wave function, {qr\a), 



C O H E R E N T A N D I N C O H E R E N T S T A T E S O F R A D I A T I O N F I E L D 2771 

obeys the differential equation 

The equation may be integrated immediately to yield 
a solution for the wave function which, in normalized 
form, is 

(q'\a}= (coM)1 '4 e x p { - [ ( c o / 2 ^ ) 1 V - « ] 2 } • (3.29) 

An analogous argument furnishes the momentum space 
wave function. If we take the scalar product of Eq. 
(3.27) with a momentum eigenstate (p'\, and use the 
relation (p'\q=ih(d/dp,)(p,\, we reach a differential 
equation whose normalized solution is 

(p'\a)= (TT&CO)-1'4 e x p { - [ ( 2 * c o ) - 1 ^ ' + ^ ] 2 } . (3.30) 

Both of these wave functions are simply displaced 
forms of the ground-state wave function of the oscillator. 
The parameters (fi/u)1!2 and (flu)112 correspond to the 
amplitudes of the zero-point fluctuations of the coordi­
nate and momentum, respectively, for an oscillator of 
unit mass. The fact that the wave functions for the 
coherent states have this elementary structure should 
be no surprise in view of the way they are generated in 
Eq. (3.13), by means of displacements in the complex 
a plane. 

The time-independent states \a) which we have been 
describing are those characteristic of the Heisenberg 
picture of quantum mechanics. The Schrodinger 
picture, alternatively, would make use of the time-
dependent states exp(—iHt/fi) \a). If we omit the zero-
point energy \hu from the oscillator Hamiltonian and 
write H=ficoa?a, it is then clear from the expansion (3.7) 
for \a) that the corresponding Schrodinger state takes 
the same form with a replaced by ae~iut. We may thus 
write the Schrodinger state as | ae~icat). With the substi­
tution of ae~i(at for a in Eqs. (3.26a) and (3.26b), we see 
that the expectation values of the coordinate and 
momentum carry out a simple harmonic motion with 
coordinate amplitude (2fi/oo)ll2\a\. The same sub­
stitutions in the wave functions (3.29) and (3.30) show 
that the Gaussian probability densities characteristic of 
the ground state of the oscillator are simply carried back 
and forth in the same motion as the expectation values. 
Such wave packets are, of course, quite familiar; they 
were introduced to quantum mechanics at a very early 
stage by Schrodinger,5 and have often been used to 
illustrate the way in which the behavior of the oscillator 
approaches the classical limit. 

Another connection in which the wave packets (3.29) 
and (3.30) have been discussed in the past has to do 
with the particular way in which they localize the 
coordinate q' and the momentum p'. Wave packets can, 

6 E. Schrodinger, Naturwissenschaften 14, 664 (1926). For a 
more recent treatment see L. I. Schiff, Quantum Mechanics 
(McGraw-Hill Book Company, Inc., New York, 1955), 2nd ed., 
p. 67. 

of course, be found which localize either variable more 
sharply, but only at the expense of the localization of 
the other. There is a sense in which the wave packets 
(3.29) and (3.30) furnish a unique compromise; they 
minimize the product of the uncertainties of the 
variables q' and p'. If we represent expectation values 
by means of the angular brackets ( ) and define the 
variances 

(Ag)2=<?2>-<?>2, (3.31a) 

(&p)*=(p*)-(p)\ (3.31b) 

we find, for the wave functions (3.29) and (3.30), that 
the product of the variances is 

(ApY(Aqy = i¥. 

According to the uncertainty principle, this is the 
minimum value such a product can have.6 There thus 
exists a particular sense in which the description of an 
oscillator by means of the wave functions (3.29) and 
(3.30) represents as close an approach to classical 
localization as is possible. 

The uses we shall make of the coherent states in 
quantum electrodynamics will not, in fact, require the 
explicit introduction of coordinate or momentum 
variables. We have reviewed the familiar representa­
tions of the coherent states in terms of these variables 
in the hope that they may be of some help in under­
standing the various applications of the states which 
we shall shortly undertake. 

One property of the states \a) which is made clear by 
the wave-function representations is that two such 
states are not, in general, orthogonal to one another. If 
we consider, for example, the wave functions (q'\a) and 
{qf\af) for values of a! close to a, it is evident that the 
functions are similar in form and overlap one another 
appreciably. For values of a! quite different from a, 
however, the overlap is at most quite small. We may 
therefore expect that the scalar product (a\af), which 
is unity for a'=a, will tend to decrease in absolute 
magnitude as a! and a recede from one another in the 
complex plane. The scalar product may, in fact, be 
calculated more simply than by using wave functions if 
we employ the representations (3.7) and (3.8). We then 
find 

(a*)n/3m 

<a|/3> = <T»"«l1-*lrfJl8£ (n\m), 
n,m (nlml)112 

which, in view of the orthonormality of the | n) states, 
reduces to 

(a|/5) = e x p { ^ - | | a | 2 - J | / 3 | 2 } . (3.32) 

The absolute magnitude of the scalar product is given 
by 

|<« | j8>|*=exp{- |«-!8 |*>, (3.33) 
6 W. Heisenberg, The Physical Principles of the Quantum Theory 

(University of Chicago Press, Chicago, 1930, reprinted by Dover 
Publications, Inc., New York, 1930), pp. 16-19. 
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which shows that the coherent states tend to become 
approximately orthogonal for values of a and fi which 
are sufficiently different. The fact that these states are 
not even approximately orthogonal for \a—f}\ of order 
unity may be regarded as an expression of the overlap 
caused by the presence of the displaced zero-point 
fluctuations. 

Since the coherent states do not form an orthogonal 
set, they appear to have received little attention as a 
possible system of basis vectors for the expansion of 
arbitrary states.7 We shall show in the following section 
that such expansions can be carried out conveniently 
and uniquely and that they possess exceedingly useful 
properties. In later sections we shall, by generalizing 
the procedure to deal with bilinear combinations of 
states | a ) and (0 | , develop analogous expansions for 
operators1 as well. 

IV. EXPANSION OF ARBITRARY STATES IN 
TERMS OF COHERENT STATES 

While orthogonality is a convenient property for a 
set of basis states it is not a necessary one. The essential 
property of such a set is that it be complete. The set of 
coherent states \a) for a mode oscillator can be shown 
without difficulty to form a complete set. To give a 
proof we need only demonstrate that the unit operator 
may be expressed as a suitable sum or an integral, over 
the complex a plane, of projection operators of the 
form |a ) (a | . In order to describe such integrals we 
introduce the differential element of area in the a plane 

d2a=d(Rea)d(Ima) (4.1) 

(i.e., d2a is real). If we write a= \<x\eid, we may easily 
prove the integral identity 

/ (a*)name~lal2d2a 

/•00 /.27T 

= / \a\n+m+1e~lal2d\a\ / ei(m~n)*d& 
Jo Jo 

= 7rnl5nm, (4.2) 

in which the integration is carried out, as indicated, 
over the entire area of the complex plane. With the aid 
of this identity and the expansions (3.7,8) for the 
coherent states, we may immediately show 

/
\a)(a\d2a=irj^ \n)(n\ . 

n 

Since the ^-quantum states are known to form a com-

7 Uses of these states as generating functions for the w-quantum 
states have, however, been made by J. Schwinger, Phys. Rev. 91, 
728 (1953). 

plete orthonormal set, the indicated sum over n is 
simply the unit operator. We have thus shown1 

- \a)(a\d2a=l, (4.3) 
7T J 

which is a completeness relation for the coherent states 
of precisely the type desired. 

An arbitrary state of an oscillator must possess an 
expansion in terms of the ^-quantum states of the form 

I ) = Y,cn\n), 
n 

= £*»——10>, (4.4) 
n (nl)1'2 

where ]T ICn\2z= 1. The series which occurs in Eq. (4.4) 
may be used to define a function / of a complex vari­
able z, 

/(*) = E * » 7 ^ — . (4.5) 
(nl)1'2 

I t is clear from the normalization condition on the cn 

that this series converges for all finite z, and thus 
represents a function which is analytic throughout the 
finite complex plane. We shall speak of the functions 
f(z) for which X) | cn \

2— 1 as the set of normalized entire 
functions. There is evidently a one-to-one correspond­
ence which exists between such entire functions and 
the states of the oscillator. One way of approaching the 
description of the oscillator is to regard the functions 
f(z) themselves as the elements of a Hilbert space. The 
properties of this space and of expansions carried out 
in it have been studied in some detail by Segal8 and 
Bargmann.9 The method we shall use for expanding 
arbitrary states in terms of the coherent states has been 
developed as a simple generalization of the usual method 
for carrying out changes of basis states in quantum 
mechanics. I t is evidently equivalent, however, to one 
of the expansions stated by Bargmann. 

If we designate the arbitrary state which corresponds 
to the function f(z) by | / ) , then we may rewrite 
Eq. (4.4) as 

l/> = /(af)|0>. (4.6) 

To secure the expansion of | / ) in terms of the states 
| a), we multiply | / ) by the representation (4.3) of the 
unit operator. We then find 

| / ) = - [\a){a\f(<J)\0)d*a, 
T J 

8 1 . E. Segal, Illinois J. Math. 6, 520 (1962). 
9 V. Bargmann, Commim. Pure and Appl. Math. 14, 187 (1961); 

Proc. Natl. Acad. Sci. U. S. 48, 199 (1962). 
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which reduces, since (a | jf(a+) = (a | /(«*), to 

| / ) = _ [\a)f(a*)e-^*d*a, 

T J 
(4.7) 

which is an expansion of the desired type. 
It is worth noting that the expansion (4.7) can easily 

be inverted to furnish an explicit form for the function 
f(a*) which corresponds to any vector | / ) . For this 
purpose we take the scalar product of both sides of 
Eq. (4.7) with the coherent state (fi\, and then, using 
Eq. (3.32), evaluate the scalar product (P\a) to find 

<fi\fr 
T J 

«-|<*l2f(VW2, 'f(a*)<Pa. (4.8) 

Since f(c?) may be expanded in a convergent power 
series we note the relation 

- [eP*^2(a*)nd*a=(p*)\ (4.9) 
7T J 

from which we may derive the more general identity 

_ [ee*^2f(a*)d*a=f(]3*). (4.10) 
7T J 

On substituting the latter identity in Eq. (4.8) we find 

/on=e^i*</3|/>. (4.H) 
There is thus a unique correspondence between func­
tions f(a*) which play the role of expansion amplitudes 
in Eq. (4.7) and the vectors | / ) which describe the 
state of the oscillator. 

An expansion analogous to Eq. (4.7) also exists for 
the adjoint state vectors. If we let g(a*) be an entire 
function of a* we may construct for the state (g | the 
expansion 

(g\=- f [ J 0 3 * ) T < / 3 | e - ^ l ^ . (4.12) 
IT J 

The scalar product of the two states (g | and | / ) may 
then be expressed as 

(g\f) = Tr-2flg(P*)Jf(") exp{/fa- | a | » - | / 3 | 2 } « 3 . 

The identity (4.10) permits us to carry out the integra­
tion over the variable a to find 

(g\i) =- llgmjW)e-^cP(i. (4.13) 

This expression for the scalar product of two vectors is, 
in essence, the starting point used by Bargmann in his 
discussion10 of the Hilbert space of functions f(z). 

10 Some of Bargmann's arguments are summarized by S. 
Schweber, J. Math. Phys. 3, 831 (1962), who has used them in 

It may be worth noting, for its mathematical interest, 
that the coherent states \a) are not linearly independent 
of one another, as the members of a complete orthogonal 
set would be. Thus, for example, the expansion (4.7) 
may be used to express any given coherent state 
linearly in terms of all of the others, i.e., in view of 
Eqs. (4.11) and (3.32) we may write 

|a>=_ A/3>^^l«lHHfl\P0. (4.14) 
T J 

There exist many other types of linear dependence 
among the states |a). We may, for example, note the 
identity 

/ 
\a)ane^"^a=Q, (4.15) 

which holds for all integral n>0. It is clear from the 
latter result that if we admitted as expansion coefficients 
in Eq. (4.7) more general functions than f(a*), say 
functions F(a,a*), there would be many additional 
ways of expanding any state in terms of coherent states. 
The constraint implicit in Eq. (4.7), that the expansion 
function must depend analytically upon the variable a* 
is what renders the expansion unique. The virtue of an 
expansion scheme in which the coefficients are uniquely 
determined is evident. It becomes possible, by inverting 
the expansion as in Eq. (4.11), to construct an explicit 
solution for the expansion coefficient of any state, no 
matter what representation it was expressed in initially. 

V. EXPANSION OF OPERATORS IN TERMS OF 
COHERENT STATE VECTORS 

Our knowledge of the condition of an oscillator mode 
is rarely explicit enough in practice to permit the 
specification of its quantum state. Instead, we must 
describe it in terms of a mixture of states which is 
expressed by means of a density operator. The same 
reasons that lead us to express arbitrary states in terms 
of the coherent states, therefore, suggest that we develop 
an expansion for the density operator in terms of these 
states as well. We shall begin by considering in the 
present section a rather more general class of operators 
and then specialize to the case of the density operator 
in the section which follows. 

A general quantum mechanical operator T may be 
expressed in terms of its matrix elements connecting 
states with fixed numbers of quanta as 

T = E \n)Tn 
n,m 

»(w| 

= £ Tnm(nlmV-1ii(d)"\0)(0\a<" 

(5.1) 

(5.2) 

connection with the formulation of quantum mechanics in terms 
of Feynman amplitudes. We are indebted to Dr. S. Bergmann for 
calling this reference to our attention. 
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If we use this expression for T to calculate the matrix 
element which connects the two coherent states (a \ and 
(/31 we find 

<«|r | l8>=£ Tnm(nlm^^)^(a\0)(0\^). (5.3) 

I t is evidently convenient to define a function T(a*,0) as 

* V , 0 ) = £ Tnm(n\m\)-u*{p?yF*. (5.4) 

The operators which occur in quantum mechanics are 
often unbounded ones such as those of Eqs. (2.16)— 
(2.18). Those operators and the others we are apt to 
encounter have the property that the magnitudes of the 
matrix elements Tnm are dominated by an expression 
of the form Mn3'mk for some fixed positive values of M, 
j , and k. I t then follows that the double series (5.4) 
converges throughout the finite a* and /3 planes and 
represents an entire function of both variables. 

To secure the expansion of the operator T in terms of 
the coherent states, we may use the representation (4.3) 
of the unit operator to write 

The expansion function for the operator Z1+, the 
Hermitian adjoint of T, is obtained by substituting 
Tmn* for Tnm in Eq. (5.4). I t is given by \jr{$\a)J. If 
the operator T is Hermitian the function T must satisfy 
the identity 

7V,/3) = Dr03*,a)T, (5.10) 

since the expansions of T and Tf are unique. 

The functions T(a*,fi) which represent normal 
products of the operators a+ and a such as (cft)n am are 
immediately seen from Eqs. (5.7) and (3.32) to be 

7V,jff)= (a)npm exp[a*/3]. (5.H) 

In particular, the unit operator corresponds to n = m = 0. 
I t may be worth noting at this point that many of 

the foregoing formulas can be abbreviated somewhat 
by adopting a normalization different from the con­
ventional one for the coherent states. If we introduce 
the symbol ||a) for the states normalized in the new way 
and define these as 

| |a)= \a)e^a^ (5.12) 

T=- f \a){a\T\($)(fi\<Pa<Pp, 

7T2 J 

TT2J 

= - [\a)f(a\ 
IT2 J 

(5.5) 

fiM(<*\0)(0\P)<PcuPfi, 

then we may write the scalar product of two such 
states as (o;||/3). We see from Eq. (3.32) that this scalar 
product is 

<«||/3>=exp[y£]. (5.13) 

We may next, following Bargmann,9 introduce an 
element of measure d(i (a) which is defined as 

fi)<0\ exp{- i |a | 2 -J | /3 | 2 }<ZW 2 /3 . 

(5.6) 

The inversion of this expansion, or the solution for 
7*(a*,jff), is accomplished by the same method we used 
to invert Eq. (4.7) and secure the amplitude function 
(4.11). The result of the inversion is 

1 
(5.14) 

With these alterations, all of the Gaussian functions, 
and factors of 7r, in the preceding formulas become 
absorbed, as it were, into the notation. The Eqs. (5.6) 
and (5.7), for example, reduce to the briefer forms 

r(a\P) = (a\T\(3)exp{±\a\2+i\!3\2}. (5.7) T= j \\a)r(a*fiW\\dp(a)dp(0) (5.15) 

We see, thus, that the expansion of operators, as well as 
of arbitrary quantum states, in terms of the coherent 
states is a unique one. 

The law of operator multiplication is easily expressed 
in terms of the functions ct. If T— T1T2 and 7*1 and T2 
are the functions appropriate to the latter two operators, 
we note that 

<a|r|/j>=<a|r1r,|J8> 

= - [(a\Ti\y)(y\Tt\P)<Py. (5.8) 
7T J 

The function T which represents the product is there­
fore given by 

r ( a \ 8 ) = - / ' ^ ( a ' r i W & e - W d t y . (5.9) 

and 
2V,/3) = <a||r||/3>. (5.16) 

A more significant property of the states ||a) is that 
they are given by the expansion 

(5.17) ||a) = E \n) 
n (n!) 1 ' 2 

and thus obey the relation 
d 

cft\\a) = —| |a) . 
da 

(5.18) 

While the properties of the alternatively normalized 
states \\a) are worth bearing in mind, we have chosen 
not to adopt this normalization in the present paper in 
order to retain the more conventional interpretation of 
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scalar products as probability amplitudes. The advan­
tage afforded by the relation (5.18) is not a great one 
since all of the operators we shall have to deal with are 
either already in normally ordered form, or easily so 
ordered. 

VI. GENERAL PROPERTIES OF THE 
DENSITY OPERATOR 

The formalism we have developed in the two preced­
ing sections has been intended to provide a background 
for the expression of the density operator of a mode in 
terms of the vectors that represent coherent states. 
Viewed in mathematical terms, the use of the coherent 
state vectors in this way leads to considerable simplifica­
tion in the calculation of statistical averages. The fact 
that these states are eigenstates of the field operators 
E ( ± )(r/) means that normally ordered products of the 
field operators, when they are to be averaged, may be 
replaced by the products of their eigenvalues, i.e., 
treated not as operators, but as numbers. The field 
correlation functions such as G(1) given by Eq. (2.1) are 
averages of just such operator products. Their evalua­
tion may be carried out quite conveniently through use 
of the representations we shall discuss. 

Any density operator p may, according to the methods 
of the preceding section, be represented in a unique 
way by means of a function of two complex variables, 
R(a*,(3), which is analytic throughout the finite a* and 
/3 planes. The function R is given explicitly, by means 
of Eq. (5.7), as 

U ( « V ) = <a |p | i8>expB|a |»+J | |8 |»] . (6.1) 

If we happen to know the matrix representation of p in 
the basis formed by the ^-quantum states, the function 
R is evidently given by 

*(a*, /S)=E {n\p\ni){n\m\)-li*(ctypm. (6.2) 

If we do not know the matrix elements (n\p\m) they 
may be found quite simply from a knowledge of 
R(a*,(3). One method for finding them is to consider 
R(a*,P) as a generating function and identify its Taylor 
series with the series (6.2). A second method is to note 
that if we multiply Eq. (6.2) by a{(/3*>' exp[— (\a\2 

+ IP12)] a n d integrate over the a and /5 planes, then all 
terms save that for n=i and m=j vanish in the sum on 
the right and we have 

w2J 
(6.3) 

Given the knowledge of R(a*,(3), we may write the 
density operator as 

p = - M a ) J R : ( a ^ ) ^ ( ^ ^ l ^ ^ 2 ^ W 2 / 3 . (6.4) 

The statistical average of an operator T is given by the 
trace of the product pT. If we calculate this average by 
using the representation (6.4) for p we must note that 
the trace of the expression \a)(P\T, regarded as an 
operator, is the matrix element ((3\T\a). Then, if we 
express the matrix element in terms of the function 
<T{afi) defined by Eq. (5.7) we find 

t r {PT}=- \R(afi)r(pp)e-M9-M*<Pad?p. (6.5) 
w2J 

If T is any operator of the form (ai)nam
) its representa­

tion ct(l3*ya) is given by Eq. (5.11). In particular for 
n=m=0, we have the unit operator T=1 which is 
represented by T(0¥

ia) = exp[fi*a]. Hence, the trace of 
p itself, which must be normalized to unity, is 

t r p = l 

=— IR(a\l3)exp\$*a-\a\2-\(3\2y2ad2p. 
TT2J 

Since R(a*,P) is an entire function of a*, we may use 
Eq. (4.10) to carry out the integration over the a plane. 
In this way we see that the normalization condition 
on R is 

- \R(0*fi)e-W2d2P=\. (6.6) 
7T J 

The density operator is Hermitian and hence has real 
eigenvalues. These eigenvalues may be interpreted as 
probabilities and so must be positive numbers. Since p 
is thus a positive definite operator, its expectation value 
in any state, e.g., the state | / ) defined by Eq. (4.6), 
must be non-negative, 

< / | p | / ) > 0 . (6.7) 

If, for example, we choose the state | / ) to be a coherent 
state |a) we find that the function R, which is given by 
Eq. (6.1), satisfies the inequality 

R(a*p)>Q. (6.8) 

If we let the state | / ) be specified as in Eq. (4.7) by an 
entire function /(a*), then we find from the inequality 
(6.7) the more general condition for positive definiteness 

/ ' [ / (a*)]7(/3*)^(a*^)e-l«l2-^l^«2
iS> 0 , (6.9) 

which must hold for all entire functions / . 
In many types of physical experiments, particularly 

those dealing with fields which oscillate at extremely 
high frequencies, we cannot be said to have any a priori 
knowledge of the time-dependent parameters. The 
predictions we make in such circumstances are un­
changed by displacements in time. They may be derived 
from a density operator which is stationary, that is, one 
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which commutes with the Hamiltonian operator or, 
more simply, with da. The necessary and sufficient 
condition that a function R(a*,f3) correspond to a 
stationary density operator is that it depend only on 
the product of its two variables, a* (3. There must, in 
other words, exist an analytic function S such that 

'R(amfi) = &(a*0). (6.10) 

That this condition is a sufficient one is clear from the 
invariance of R under the multiplication of both a and 
ft by a phase factor, eitp. The condition may be derived as 
a necessary one directly from the vanishing of the 
commutator of p with a? a. An alternative and perhaps 
simpler way of seeing the result depends on noting that 
a stationary p can only be a function of the Hamiltonian 
for the mode, or of afa. It is therefore diagonal in the 
basis formed by the w-quantum states, i.e., (n\p\m) 
= <>nm(n | p | n). Examination of the series expansion (6.2) 
for R then shows that it then takes the form of Eq. 
(6.10). 

VII. THE P REPRESENTATION OF THE 
DENSITY OPERATOR 

In the preceding sections we have demonstrated the 
generality of the use of the coherent states as a basis. 
Not all fields require for their description density 
operators of quite so general a form. Indeed for a broad 
class of radiation fields which includes, as we shall see, 
virtually all of those studied in optics, it becomes 
possible to reduce the density operator to a considerably 
simpler form. This form is one which brings to light 
many similarities between quantum electrodynamical 
calculations and the corresponding classical ones. I ts 
use offers deep insights into the reasons why some of the 
fundamental laws of optics, such as those for super­
position of fields and calculation of the resulting 
intensities, are the same as in classical theory, even 
when very few quanta are involved. We shall continue, 
for the present, to limit consideration to a single mode 
of the field. 

One type of oscillator state which interests us 
particularly is, of course, a coherent state. The density 
operator for a pure state \a) is just the projection 
operator 

P = l « > < « | . (7-1) 

The unique representation of this operator as a function 
R(fi*>y) is easily shown, from Eq. (6.1), to be 

R(P\y) = exp[p*a+ya*- H 2 ] - (7.2) 

Other functions R(0*,y), which satisfy the analyticity 
requirements necessary for the representations of 
density operators, may be constructed by forming linear 
combinations of exponentials such as (7.2) for various 
values of the complex parameter a. The functions R, 
which we form in this way, represent statistical mix­
tures of the coherent states. The most general such 

function R may be written as 

*G8VY) = IP(a) exp[j3*a+ya*- | a | 2 ] ^ a , (7.3) 

where P{a) is a weight function defined at all points of 
the complex a plane. Since R(J3*,y) must satisfy the 
Hermiticity condition, Eq. (5.10), we require that the 
weight function be real-valued, i.e., t.P(a)2* = P(a). The 
function P(a) need not be subject to any regularity 
conditions, but its singularities must be integrable 
ones.11 I t is convenient to allow P(a) to have delta-
function singularities so that we may think of a pure 
coherent state as represented by a special case of 
Eq. (7.3). A real-valued two-dimensional delta function 
which is suited to this purpose may be defined as 

8W(a) = 8(Rea)5(Ima). (7.4) 

The pure coherent state | fi) is then evidently described 
by 

P(a) = *W(a- /5) , (7.5) 

and the ground state of the oscillator is specified by 
setting /3 = 0. 

The density operator p which corresponds to Eq. (7.3) 
is just a superposition of the projection operators (7.1), 

p = P(a)\a)(a\d2a. (7.6) 

I t is the kind of operator we might naturally be led to 
if we were given knowledge that the oscillator is in a 
coherent state, but one which corresponds to an un­
known eigenvalue a. The function P(a) might then be 
thought of as playing a role analogous to a probability 
density for the distribution of values of a over the 
complex plane.12 Such an interpretation may, as we 
shall see, be justified at times. In general, however, it is 
not possible to interpret the function P(a) as a proba­
bility distribution in any precise way since the projec­
tion operators \a)(a | with which it is associated are not 
orthogonal to one another for different values of a. 
There is an approximate sense, as we have noted in 
connection with Eq. (3.33), in which two states \a) 
and \a') may be said to become orthogonal to one 
another for \a—C/|>>>1, i.e., when their wave packets 
(3.29) and those of the form (3.30) do not appreciably 
overlap. When the function P(a) tends to vary little 
over such large ranges of the parameter a, the non-
orthogonality of the coherent states will make little 
difference, and P(a) will then be interpretable approxi­
mately as a probability density. The functions P(a) 

11 If the singularities of P(a) are of types stronger than those of 
delta functions, e.g., derivatives of delta functions, the field 
represented will have no classical analog. 

12 The existence of this form for the density operator has also 
been observed by E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 
(1963). His note is discussed briefly at the end of Sec. X. 
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which vary this slowly will, in general, be associated 
with strong fields, ones which may be described approxi­
mately in classical terms. 

We shall call the expression (7.6) for the density 
operator the P representation in order to distinguish it 
from the more general form based on the functions R 
discussed earlier. The normalization property of the 
density operator requires that P (a) obey the normaliza­
tion condition 

t rp= jP(a)d2a=l. (7.7) 

I t is interesting to examine the conditions that the 
positive deflniteness of p places upon P(a ) . If we apply 
the condition (6.9) to the function R(P*,y) given by 
Eq. (7.3) we find 

f\J((r)Jf(y*)P(«) expD3Vt-7a*- H 2 -1 /3 | 2 - M 2 ] 

X « W T > 0 . (7.8) 

The y integration may be carried out via Eq. (4.10) and 
the ft integration by means of its complex conjugate. 
We then have the condition that 

J | f(a) 12P(a)e-^2d"a>0 (7.9) 

must hold for all entire functions f(a*). In particular, 
the choice /(a*) = exp[jfa*—-Jl/312] leads to the simple 
condition 

/ p ( a )« r l « - f lWa>0 , (7.10) 

which must hold for all complex values of /3. I t corre­
sponds to the requirement (0| p | /3)>0. These conditions 
are immediately satisfied if P (a) is positive valued as it 
would be, were it a probability density. They are not 
strong enough, however, to exclude the possibility that 
P(a) takes on negative values over some suitably 
restricted regions of the plane.13 This result serves to 
underscore the fact that the weight function P(a) can­
not, in general, be interpreted as a probability density.14 

If a density operator is specified by means of the P 
representation, its matrix elements connecting the n-

13 An example of a weight function P(a) which takes on negative 
values but leads to a positive-definite density operator is given by 
the form 

P(a) = (1+X) (7m)-1 e x p [ - |a|2A*]-X5<2>(a) 

for w>0 and 0 < \ < w - 1 . The matrix representation of the corre­
sponding density operator, which is given by Eq. (7.12), is seen 
to be diagonal and to have only positive eigenvalues. 

14 A familiar example of a function which plays a role analogous 
to that of a probability density, but may take on negative values 
in quantum-mechanical contexts is the Wigner distribution 
function, E. P. Wigner, Phys. Rev. 40, 749 (1932), 

quantum states are given by 

(n\p\m)= P(a)(n\a)(a\m)d2a. (7.11) 

When Eqs. (3.3) and (3.6) are used to evaluate the 
scalar products in the integrand we find 

(n\p\m) = (nlm!)-1*2 P(a)an(af)me~^2d2a. (7.12) 

This form for the density matrix indicates a funda­
mental property of the fields which are most naturally 
described by means of the P representation. If P(a) is 
a weight function with singularities no stronger than 
those of delta function type, it will, in general, possess 
nonvanishing complex moments of arbitrarily high 
order. [The unique exception is the choice P(a) = 6(2) (a) 
which corresponds to the ground state of the mode.] I t 
follows then that the diagonal matrix elements (n\p\n), 
which represent the probabilities for the presence of n 
photons in the mode, take on nonvanishing values for 
arbitrarily large n. There is thus no upper bound to the 
number of photons present when the function P is well 
behaved in the sense we have noted.15 

Stationary density operators correspond in the P 
representation to functions P{a) which depend only 
on \a\. This correspondence is made clear by Eq. (7.2) 
which shows that such P(a) lead to functions R((3*,y) 
which are unaltered by a common phase change of 0 
and y. I t is seen equally well through Eq. (7.12) which 
shows that (n\p\m) reduces to diagonal form when the 
weight function P(a) is circularly symmetric. 

Some indication of the importance, in practical 
terms, of the P representation for the density operator 
can be found by considering the way in which photon 
fields produced by different sources become superposed. 
Since we are only discussing the behavior of one mode 
of the field for the present, we are only dealing with a 
fragment of the full problem, but all the modes may 
eventually be treated similarly. We shall illustrate the 
superposition law by assuming there are two different 
transient radiation sources coupled to the field mode 
and that they may be switched on and off separately. 
The first source will be assumed, when it is turned on 
alone at time h, to excite the mode from its ground 
state |0) to the coherent state |a i) . If we assume that 
the source has ceased radiating by a time fo, the state of 
the field remains |ai) for all later times. We may 
alternatively consider the case in which the first source 
remains inactive and the second one is switched on at 

16 Density operators for fields in which the number of photons 
present possesses an upper bound N are represented by functions 
^( |3*,Y) which are polynomials of iVth degree in /3* and in y. I t is 
evident from the behavior of such polynomials for large | /31 and 
| Y | that any weight function P(a) which corresponds to R(fi*,y) 
through Eq. (7.2) would have to have singularities much stronger 
than those of a delta function. Such fields are probably represented 
rnore convenientlyjjy^means of the R function, 
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time fa. The second source will then be assumed to 
bring the mode from its ground state to the coherent 
state 1^2}. We now ask what state the mode will be 
brought to if the two sources are allowed to act in 
succession, the first at h and the second at fa. 

The answer for this simple case may be seen without 
performing any detailed calculations by making use of 
the unitary displacement operators described in Sec. 
I I I . The action of the first source is represented by the 
unitary operator D(o>i) which displaces the oscillator 
state from the ground state to the coherent state 
\ai)=D(ai)\0). The action of the second source is 
evidently represented by the displacement operator 
D(cc2), so that when it is turned on after the first source, 
it brings the oscillator to the superposed state 

I > = D(a,)Z?(aO|0>. (7.13) 

Since the displacement operators are of the exponen­
tial form (3.17), their multiplication law is given by 
Eq. (3.20). We thus find 

D(a2)D(a1) = D(a1+a2) e x p [ K W - « 2 * a i ) ] . (7.14) 

The exponential which has been separated from the D 
operators in this relation has a purely imaginary 
argument and, hence, corresponds to a phase factor. The 
superposed state, (7.13), in other words, is just the 
coherent state | a i+a2) multiplied by a phase factor. 
The phase factor has no influence upon the density 
operator for the superposed state, which is 

P= \oti+a2)(ai+(X2\ • (7.15) 

To vary the way in which the sources are turned on in 
the imaginary experiment we have described, e.g., to 
turn the two sources on at other times or in the reverse 
order, would only alter the final state through a phase 
factor and would thus lead to the same final density 
operator. The amplitudes of successive coherent 
excitations of the mode add as complex numbers in 
quantum theory, just as they do in classical theory. 

Let us suppose next that the sources in the same 
experiment are somewhat less ideal and that, instead of 
exciting the mode to pure coherent states, they excite 
it to conditions described by mixtures of coherent states 
of the form (7.6). The first source acting alone, we 
assume, brings the field to a condition described by the 
density operator 

Pi= fPi (a i ) | a i><ai |*a i . (7.16) 

The condition produced by the second source, when it 
acts alone, is assumed to be represented by 

P = / P2 (0J2) I a2)(a21 d2a2, 

- /'P2(a2)D(a2)\0)(0\n~1(a2)d*a2. 

If the second source is turned on after the first, it brings 
the field to a condition described by the density operator 

P= P2(a2)D(a2)p1D~i(a2)d*a2, 

= / P 2(0^2) Pi(ai)\aiJi-a2}(ai-\-a2\d2aid2a2. (7.17) 

The latter density operator may be written in the 
general form 

p = P(a)\a)(a\d2a, 

if we define the weight function P(a) for the superposed 
excitations to be 

P(a)= / b^{a-a1-a2)P1{al)P2{a2)d
2aid2a2, (7.18) 

= Pi(a-a')P2(a')d2a'. (7.19) 

We see immediately from Eq. (7.18) that P is correctly 
normalized if Pi and P2 are. The simple convolution 
law for combining the weight functions is one of the 
unique features of the description of fields by means of 
the P representation. I t is quite analogous to the law 
we would use in classical theory to describe the proba­
bility distribution of the sum of two uncertain Fourier 
amplitudes for a mode. 

The convolution theorem can often be used to 
separate fields into component fields with simpler 
properties. Suppose we have a field described by a 
weight function P(a) which has a mean value of a given 
by 

5 = jaP(a)d2a. (7.20) 

I t is clear from Eq. (7.19) that any such field may be 
regarded as the sum of a pure coherent field which 
corresponds to the weight function d(2)(a—a) and an 
additional field represented by P(a+a) for which the 
mean value of a vanishes. Fields with vanishing mean 
values of a will be referred to as unphased fields. 

The use of the P representation of the density 
operator, where it is not too singular, leads to simplifica­
tions in the calculation of statistical averages which go 
somewhat beyond those discussed in the last section. 
Thus, for example, the statistical average of any 
normally ordered product of the creation and annihila­
tion operators, such as (at)nam, reduces to a simple 
average of {a)nam taken with respect to the weight 
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function P(a), i.e., we have 

tr{p(a t)nam}= / P(a) (a | (d)nam\a)d2a, 

= [p(a)(a*)namd2a. (7.21) 

This identity means, in practice, that many quantum-
mechanical calculations can be carried out by means 
which are analogous to those already familiar from 
classical theory. 

The mean number of photons which are present in a 
mode is the most elementary measure of the intensity 
of its excitation. The operator which represents the 
number of photons present is seen from Eq. (2.18) to 
be cfta. The average photon number, written as (n), is 
therefore given by 

<»> = t r { p a M . (7.22) 

According to Eq. (7.21), with its two exponents set 
equal to unity, we have 

<n>= JP(a)\a\2d2a, (7.23) 

i.e., the average photon number is just the mean squared 
absolute value of the amplitude a. When two fields 
described by distributions P i and Pi are superposed, 
the resulting intensities are found from rules of the form 
which have always been used in classical electromag­
netic theory. For unphased fields the intensities add 
"incoherently"; for coherent states the amplitudes add 
"coherently." 

The use of the P representation of the density 
operator in describing fields brings many of the results 
of quantum electrodynamics into forms similar to those 
of classical theory. While these similarities make 
applications of the correspondence principle particularly 
clear, they must not be interpreted as indicating that 
classical theory is any sort of adequate substitute for 
the quantum theory. The weight functions Pia) which 
occur in quantum theoretical applications are not 
accurately interpretable as probability distributions, 
nor are they derivable as a rule from classical treatments 
of the radiation sources. They depend upon Planck's 
constant, in general, in ways that are unfathomable by 
classical or semiclassical analysis. 

Since a number of calculations having to do with 
photon statistics have been carried out in the past by 
essentially classical methods, it may be helpful to 
discuss the relation between the P representation and 
the classical theory a bit further. I t is worth noting in 
particular that the definition we have given the ampli­
tude a as an eigenvalue of the annihilation operator is 
an intrinsically quantum-mechanical one. If we wish to 
represent a given classical field amplitude for the mode 

as an eigenvalue, then we see from Eq. (2.20) that the 
appropriate value of a has a magnitude which is 
proportional to fir112. In the dimensionless terms in 
which a is defined, the classical description of the mode 
only applies to the region | a | ^> l of the complex a 
plane, i.e., to amplitudes of oscillation which are large 
compared with the range of the zero-point fluctuations 
present in the wave packet (3.29) and (3.30). Classical 
theory can therefore, in principle, only furnish us with 
the grossest sort of information about the weight 
function P(a). When the weight function extends 
appreciably into the classical regions of the plane, 
classical theory can only be relied upon, crudely speak­
ing, to tell us average values of the function P(a) over 
areas whose dimensions, | Aa |, are of order unity or 
larger. From Eq. (7.10) we see that such average values 
will always be positive; in the classical limit they may 
always be interpreted as probabilities. 

VIII. THE GAUSSIAN DENSITY OPERATOR 

The Gaussian function is a venerable statistical 
distribution, familiar from countless occurrences in 
classical statistics. We shall indicate in this section that 
it has its place in quantum field theory as well, where 
it furnishes the natural description of the most com­
monly occurring type of incoherence.1 

Let us assume that the field mode we are studying is 
coupled to a number of sources which are essentially 
similar but are statistically independent of one another 
in their behavior. Such sources might, in practice, 
simply be several hypothetical subdivisions of one large 
source. If we may represent the contribution of each 
source (numbered j= 1, • • • N) to the excitation of the 
mode by means of a weight function p(aj), we may then 
construct the weight function P(a) which describes the 
superposed fields by means of the generalized form of 
the convolution theorem 

P ( « ) = / 8^1 a - E OLA U p(a3)d
2ah (8.1) 

Since the weight functions which appear in this 
expression are all real valued, it is sometimes convenient 
to think of the amplitudes a in their arguments not as 
complex numbers, but as two-dimensional real vectors a 
(i.e., a x =Rea: , % = I m « ) . Then if X is an arbitrary 
complex number represented by the vector \ we may 
use a two-dimensional scalar product for the abbrevia­
tion 

R e X R e a + I m X I m a - c r ^ . (8.2) 

Using this notation, we may define the two-dimensional 
Fourier transform of the weight function p (a) as 

f(3t)= / exp(iX-a)p(a)d2a. (8.3) 
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The superposition law (8.1) then shows that the Fourier 
transform of the weight function P(a) is given by 

K M - / exp(iX-a)P(pL)d2a, 

= KOT. (8.4) 

If the individual sources are stationary ones their 
weight function p (a) depends only on | a |. The trans­
form £(2i) may then be approximated for small values 
of \X\ by 

£(*)=!- -ft2/l«l lp(u)d2a, 

= 1-IV(\«\*). (8.5) 

For values of |^,| which are smaller still (i.e., | ^ | 2 

< 7 V _ 1 / 2 ( | Q : | 2 ) ~ 1 ) , the transform g for the superposed 
field may be approximated by 

S ( 3 l ) « e x p { - i 3 l W < | a | 2 » . (8.6) 

Since the weight function p (a) may take on negative 
values it is necessary at this point to verify that the 
second moment ( | a | 2 ) is positive. That it is indeed 
positive is indicated by Eqs. (7.22) and (7.23) which 
show that (| a |2) is the mean number of photons which 
would be radiated by each source in the absence of the 
others. For large values of N the transform g(3i) there­
fore decreases rapidly as | ^ | increases. Since the 
function becomes vanishingly small for \X | lying outside 
the range of approximation noted earlier, we may use 
(8.6) more generally as an asymptotic approximation 
to g(2c) for large N. When we calculate the transform of 
this asymptotic expression for g(3») we find 

P(a)=(2w)-2 exp(-^-20g(X)d2A, 

exp(-a2/N(\a\2)). 
TN{\a\2) 

5.7) 

The mean value of | a | 2 for such a weight function is 
evidently N( | a | 2 ) , but by the general theorem expressed 
in Eq. (7.23), this mean value is just the average of the 
total number of quanta present in the mode. If we write 
the latter average as (n)} and resume the use of the 
complex notation for the variable a, the weight function 
(8.7) may be written as 

1 
P ( a ) = -arl «!»/<»>. (8.8) 

The weight function P(a) is positive everywhere and 
takes the same form as the probability distribution for 
the total displacement which results from a random 
walk in the complex plane. However, because the 
coherent states \a) are not an orthogonal set, P(a) can 

only be accurately interpreted as a probability distribu­
tion for {n)^>l. We may note that it is not ultimately 
necessary, in order to derive Eq. (8.8), to assume that 
the weight functions corresponding to the individual 
sources are all the same. All that is required to carry 
out the proof is that the moments of the individual 
functions be of comparable magnitudes. The mean 
squared value of \a\ is then given more generally by 
!Lj(\aj\2), rather than the value in Eq. (8.7), but this 
value is still the mean number of quanta in the mode, as 
indicated in Eq. (8.8). 

I t should be clear from the conditions of the deriva­
tion that the Gaussian distribution P(a) for the excita­
tion of a mode possesses extremely wide applicability. 
The random or chaotic sort of excitation it describes is 
presumably characteristic of most of the familiar types 
of noncoherent macroscopic light sources, such as gas 
discharges, incandesant radiators, etc. 

The Gaussian density operator 

p = /«nl«IV<»>|a)(a|<pa (8.9) 

may be seen to take on a very simple form as well in the 
basis which specifies the photon numbers. To find this 
form we substitute in Eq. (8.9) the expansions (3.7) 
and (3.8) for the coherent states and note the identity 

T T - K ^ O - 1 ' 2 / exp[-C|o: | 2> z (a*)^ 2Q;=5Z mC-^+ 1 ) , 

which holds for C > 0 . If we write C= (l-\-(n))/(n) we 
then find 

1 f (n) p 
P= E \m){m\. (8.10) 

l+<»> m l n » J 
In other words, the number of quanta in the mode is 
distributed according to the powers of the parameter 
(n)/(l+(n)). The Planck distribution for blackbody 
radiation furnishes an illustration of a density operator 
which has long been known to take the form of Eq. 
(8.10). The thermal excitation which leads to the black-
body distribution is an ideal example of the random type 
we have described earlier, and so it should not be sur­
prising that this distribution is one of the class we have 
derived. I t is worth noting, in particular, that while the 
Planck distribution is characteristic of thermal equili­
brium, no such limitation is implicit in the general form 
of the density operator (8.9). I t will apply whenever 
the excitation has an appropriately random quality, no 
matter how far the radiator is from thermal equilibrium. 

The Gaussian distribution function exp£— | a | 2 / ( ^ ) ] 
is phrased in terms which are explicitly quantum 
mechanical. In the limit which would represent a 
classical field both \a\2 and the average quantum 
number (n) become infinite as fir1, but their quotient, 
which is the argument of the Gaussian function, remains 
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well defined. The form which the distribution takes in 
the classical limit is a familiar one. Historically, one of 
the origins of the random walk problem is to be found 
in the discussion of a classical harmonic oscillator which 
is subject to random excitations.16 Such oscillators have 
complex amplitudes which are described under quite 
general conditions by a Gaussian distribution. If we 
were armed with this knowledge, and lacked the 
quantum-mechanical analysis given earlier, we might 
be tempted to assume that a Gaussian distribution 
derived in this way from classical theory can describe 
the photon distribution. To demonstrate the fallacy of 
this view we must examine more closely the nature of 
the parameter (n) which is, after all, the only physical 
constant involved in the distribution. We may take, as 
a simple illustration, the case of thermal excitation 
corresponding to temperature T. Then the mean photon 
number is given by (w) = [exp (^CO/KT) •— l ] " 1 , where K is 
Boltzmann's constant, and the distribution P(a) takes 
the form 

1 
p ( a ) = - [ a * « / « r - . l ] e x p [ - ( « * - / « r - l ) | a | 2 ] . (8.11) 

7T 

To reach the classical analog of this distribution we 
would assume that the classical field energy in the mode, 
J9 r = | / (E 2 +B 2 ) J r , is distributed with a probability 
proportional to exp[~—H/nT~]. The distribution for the 
amplitude a that results is 

Pci(a)=(tiW™T) e x p [ - f e | a | 2 A ^ ] , (8.12) 

which is seen to be a first approximation in powers of fi 
to the correct distribution. (Again, we must remember 
that the quantity fi \ a |2 is to be construed as a classical 
parameter.) The distribution PCI{OL) only extends into 
the classical region of the plane, | a | ^> l , for low-
frequency modes, that is, only for (fno/K7")<<Cl are the 
modes sufficiently excited to be accurately described by 
classical theory. For higher frequencies the two distri­
butions differ greatly in nature even though both are 
Gaussian. The classical distribution retains much too 
large a radius in the a plane as fioo increases beyond KT, 
rather than narrowing extremely rapidly as the correct 
distribution does.17 That error, in fact, epitomizes the 
ultraviolet catastrophe of the classical radiation theory. 
The example we have discussed is, of course, an ele­
mentary one, but it should serve to illustrate some of 
the points noted in the preceding section regarding the 
limitations of the classical distribution function. 

The expression for the thermal density operator of an 
oscillator in terms of coherent quantum states appears 

16 Lord Rayleigh, The Theory of Sound, (MacMillan and 
Company Ltd., London, 1894), 2nd ed., Vol. I, p. 35; Scientific 
Papers (Cambridge University Press, Cambridge, England, 
1899-1920), Vol. I, p. 491, Vol. IV, p. 370. 

17 For frequencies in the middle of the visible spectrum and 
temperatures under 3000°K the quantum mechanical distribution 
(8.11) will have a radius which corresponds to |a|2<<ClO_3, i.e., 
the distribution is far from classical in nature. Comparable radii 
characterize the distributions for nonthermal incoherent sources. 

to offer new and instructive approaches to many 
familiar problems. I t permits us, for example, to derive 
the thermal averages of exponential functions of the 
operators a and af in an elementary way. The thermal 
average of the operator D(f$) defined by Eq. (3.17) is 
an illustration. I t is given by 

tv{PD(l3)} = [e-\«WW(a\D(0)\a)d*a. (8.13) 

The expectation value in the integrand is, in this case 

(a\D(t3)\a)^(0\^(a)D(t3)D(a)\0), 

= expI>*-i8*a]<O|JD03)|O>, 

-expO?a*-/5*a](0|/3), 

= e x p I > * - A - i | / 3 | 2 ] , (8.14) 

where the properties of D(a) as a displacement operator 
have been used in the intermediate steps. When the 
integration indicated in Eq. (8.13) is carried out, we find 

tr{pZ)(«} = e x p [ - | / 3 | 2 ( < « m ) ] , (8.15) 

which is a frequently used corollary of Bloch's theorem 
on the distribution function of an oscillator coordinate.18 

IX. DENSITY OPERATORS FOR THE FIELD 

The developments introduced in Sees. I l l - V I I I have 
all concerned the description of the quantum state of a 
single mode of the electromagnetic field. We may 
describe the field as a whole by constructing analogous 
methods to deal with all its modes at once. For this 
purpose we introduce a basic set of coherent states for 
the entire field and write them as 

|<a*}>=II|a*>*, (9.1) 
k 

where the notation {«&}, which will be used in several 
other connections, stands for the set of all amplitudes 
ah. I t is clear then, from the arguments of Sec. IV, that 
any state of the field determines uniquely a function 
f({ak*}) which is an entire function of each of the 
variables otk*. If the Hilbert space vector which repre­
sents the state is known and designated as | / ) , the 
function / is given by 

/({«»•» = <{«*} | / ) e x p ( § Z * |«*|»), (9-2) 

which is the direct generalization of Eq. (4.11). The 
expansion for the state | / ) in terms of coherent states 
is then 

l / H f {{^/({a^Il^e-^^ajc, (9.3) 
J k 

which generalizes Eq. (4.7). 
All of the operators which occur in field theory possess 

expansions in terms of the vectors |{a&}) and their 
18 F. Bloch, Z. Physik 74, 295 (1932). 
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adjoints. To construct such representations is simply a 
matter of generalizing the formulas of Sec. V to deal 
with an infinite set of amplitude variables. We therefore 
proceed directly to a discussion of the density operator. 
For any density operator p we may define a function 
R({ak*},{Pk}) which is an entire function of each of the 
variables ak and pk for all modes k. This function, as 
may be seen from Eq. (6.1), is given by 

m"k*uPk})=({«k}\p\{pk}) 
X e x p [ f L ( M 2 + | / ^ | 2 ) ] . (9.4) 

The corresponding representation of the density 
operator is 

»=/" |{af t»*({«n,{ |8*})<{/5*}ir i i r 
J k 

Xe->«a^^d2akd*l3k. (9.5) 

If the set of integers {nk} is used to specify the familiar 
stationary states which have nk photons in the &th 
mode, we may regard R as a generating function for the 
matrix elements of p connecting these states, i.e., as a 
generalization of Eq. (6.2) we have 

*({«**},{&»= £ < { » * > I P | { * * » 
{nk},{mk} 

X I I (»*\mh!)-
1/2(a**)n*/3*~*. (9.6) 

are The matrix elements of p in the stationary basis 
then given by 

{{nh}\p\{mk}) 

k 

Xf-u-rt^MtPattPfo. (9.7) 

The normalization condition on R is clearly 

k 
(9.8) 

The positive defmiteness condition, Eq. (6.9), may also 
be generalized in an evident way to deal with the full 
set of amplitude variables. 

I t may help as a simple illustration of the foregoing 
formulae to consider the representation of a single-photon 
wave packet. The state which is empty of all photons is 
the one for which the amplitudes ak all vanish. If we 
write that state as | vac), then we may write the most 
general one-photon state as J^k g(&)a*;+| vac), where the 
function q(k) plays the role of a packet amplitude. The 
function f which represents this state is then 

and the corresponding function R which determines the 
density operator is 

*({«»*},<&» = £ q(kW E q*(k>)pk,. (9.10) 
k k* 

The normalization condition (9.8) corresponds to the 
requirement X) l(?(^)l2==l- Since the state we have 
considered is a pure one, the function R factorizes into 
the product of two functions, one having the form of / 
and the other of its complex conjugate. If the packet 
amplitudes q(k) were in some degree unpredictable, as 
they usually are, the packet could no longer be repre­
sented by a pure state. The function R would then be an 
average taken over the distribution of the amplitudes 
q(k) and hence would lose its factorizable form in 
general. Whenever an upper bound exists for the 
number of photons present, i.e., the number of photons 
is required to be less than or equal to some integer N, 
we will find that R is a polynomial of at most Nth 
degree in the variables {«&*} and of the same degree in 
the {ft}. 

There will, of course, exist many types of excitation 
for which the photon numbers are unbounded. Among 
these are the ones which are more conveniently de­
scribed by means of a generalized P distribution, i.e., 
the excitations for which there exists a reasonably well-
behaved real-valued function P({ak}) such that 

r U W (9.11) 

*(tf**},{7*»= P({«k}) 

Xexp X) (j3k*ak+ykOLk*—\ak\2) 

When R possesses a representation of this type the 
density operator (9.5) may be reduced by means of 
Eq. (4.14) and its complex conjugate to the simple form 

p = fp({ak})\{ak})({ak}\ Ufa*, (9.12) 

which is the many-mode form of the P representation 
given by Eq. (7.6). The function P must satisfy the 
positive defmiteness condition 

\f({ak*})\*P({ak})Ile-^2d>ak>0 (9.13) 

for all possible choices of entire functions f({ak*}). The 
matrix elements of the density operator in the repre­
sentation based on the ^-photon states are 

<{»*} IPU»»*})= / P(M) 

(9.9) X I I (»* !w* !)-1'W»(a**)"*«rl'*lWn*. (9.14) 
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Stationary density operators, i.e., ones which commute 
with the Hamiltonian correspond to functions P({ak}) 
which depend on the amplitude variables only through 
their magnitudes { |a&| }. 

The superposition of two fields is described by form­
ing the convolution integral of their distribution func­
tions, much as in the case of a single mode. Thus, if two 
fields, described by Pi({ft}) and P2({yk})J respectively, 
are superposed, the resulting field has a distribution 
function 

P({ak}) = tlldW(ak-pk-yk) 

XPi({/3k})P2({yk})Ud*t3kdZyk. (9.15) 
k 

For fields which are represented by means of the 
density operator (9.12) all of the averages of normally 
ordered operator products can be calculated by means 
of formulas which, as in the case of a single mode, 
greatly resemble those of classical theory. Thus, the 
parameters {ak} play much the same role in these 
calculations as the random Fourier amplitudes of the 
field do in the familiar classical theory of microwave 
noise.19 Furthermore, the weight function P({ak}) plays 
a role similar to that of the probability distribution for 
the Fourier amplitudes. Although this resemblance is 
extremely convenient in calculations, and offers 
immediate insight into the application of the corre­
spondence principle, we must not lose sight of the fact 
that the function P({ak}) is, in general, an explicitly 
quantum-mechanical structure. I t may assume negative 
values, and is not accurately interpretable as a proba­
bility distribution except in the classical limit of 
strongly excited or low frequency fields. 

In the foregoing discussions we have freely assumed 
that the density operator which describes the field is 
known and that it may, therefore, be expressed either in 
the representation of Eq. (9.5) or in the P representa­
tion of Eq. (9.12). For certain types of incoherent 
sources which we have discussed in Sec. VIII and will 
mention again in Sec. X, the explicit construction of 
these density operators is not at all difficult. But to find 
accurate density operators for other types of sources, 
including the recently developed coherent ones, will 
require a good deal of physical insight. The general 
problem of treating quantum mechanically the inter­
action of a many-atom source both with the radiation 
field and with an excitation mechanism of some sort 
promises to be a complicated one. I t will have to be 
approached, no doubt, through greatly simplified 
models. 

Since very little is known about the density operator 
for radiation fields, some insight may be gained by 
examining the form it takes on in one of the few com-

19 J. Lawson and G. E. Uhlenbeck, Threshold Noise Signals 
(McGraw-Hill Book Company, Inc., New York, 1950), pp. 33-56. 
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pletely soluble problems of quantum electrodynamics. 
We shall study the photon field radiated by an electric 
current distribution which is essentially classical in 
nature, one that does not suffer any noticeable reaction 
from the process of radiation. We may then represent 
the radiating current by a prescribed vector function of 
space and time j(r,tf). The Hamiltonian which describes 
the coupling of the quantized electromagnetic field to 
the current distribution takes the form 

# i ( 0 — /"j(r ,0-A(r ,0&. (9.16) 
c J 

The introduction of an explicitly time-dependent 
interaction of this type means that the state vector for 
the field, | ), which previously was fixed (corresponding 
to the Heisenberg picture) will begin to change with 
time in accordance with the Schrodinger equation 

i%~\ >=J3Ti(0l >, (9.17) 
dt 

which is the one appropriate to the interaction repre­
sentation. The solution of this equation is easily found.20 

If we assume that the initial state of the field at time 
/ = — co is one empty of all photons, then the state of 
the field at time t may be written in the form 

|*) = exp — / & ' / j ( r / ) ' A ( r , O i r + * > ( / ) |vac) . 

(9.18) 

The function <p(i) which occurs in the exponent is a 
real-valued c-number phase function. I t is easily 
evaluated, but cancels out of the product \t)(t\ and so 
has no bearing on the construction of the density 
operator. The exponential operator which occurs in 
Eq. (9.18) may be expressed quite simply in terms of 
the displacement operators we discussed in Sec. I I I . 
For this purpose we define a displacement operator Dk 

for the &th mode as 

Dk(fik) = e x p D W - f e ] . (9.19) 

Then it is clear from the expansion (2.10) for the vector 
potential that we may write 

e x p j - I * , H ( r / ) - A ( r / ) * ) = I I ^ i b C « * ( 0 ] , (9.20) 

where the time-dependent amplitudes ak(t) are given by 

a*(0 = " [ dt' druk*(r).j(r,Oc*w|/• (9.21) 
(2&co)1/2./-cc J 

The density operator at time t may therefore be written 

20 R. J. Glauber, Phys. Rev. 84, 395 (1951). 
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as 

\t)(t\ = 1 1 Dk[ak(t)l\vac)(vac| I I D r W t ) ] (9-22) 
k k 

= I {«*(')»<{«*(')> I • (9-23) 

The radiation by any prescribed current distribution, 
in other words, always leads to a pure coherent state. 

I t is only a slight generalization of the model we have 
just considered to imagine that the current distribution 
j (t,t) is not wholly predictable. In that case the ampli­
tudes oik(t) defined by Eq. (9.21) become random 
variables which possess collectively a probability distri­
bution function which we may write as p({ak},t). The 
density operator for the field radiated by such a random 
current then becomes 

P(O=/#(W,Oi{«*»<{«*>i n<p«*. (9.24) 

We see that the density operator for a field radiated by 
a random current which suffers no recoil in the radiation 
process always takes the form of the P representation 
of Eq. (9.12). The weight function in this case does 
admit interpretation as a probability distribution, but 
it has a classical structure associated directly with the 
properties of the radiating current rather than with 
particular (nonorthogonal) states of the field. The 
assumption we have made in defining the model, that 
the current suffers negligible reaction, is a strong one 
but is fairly well fulfilled in radiating systems operated 
at radio or microwave frequencies. The fields produced 
by such systems should be accurately described by 
density operators of the form (9.24). 

X. CORRELATION AND COHERENCE PROPERTIES 
OF THE FIELD 

Any eigenvalue function £(r/) which satisfies the 
appropriate field equations and contains only positive 
frequency terms determines a set of mode amplitudes 
{ajc} uniquely through the expansion (2.20). This set of 
mode amplitudes then determines a coherent state of 
the field, | {ak}), such that 

E^>(rO|{ajb»=fi(r t ) |{a*». (10.1) 

To discuss the general form which the field correlation 
functions take in such states it is convenient to abbrevi­
ate a set of coordinates (r,-,̂ -) by a single symbol x3\ The 
^th-order correlation function is then defined as3 

G>1 • • -M2n (n) ( # 1 * ' ' %2n) = t r { p E M 1 < - > fa) • • • 

XJW-K*«)£,„+l ( + )(*n+l)- • 'E^fan)} . (10.2) 

The density operator for the coherent state defined by 
Eq. (10.1) is the projection operator 

p = | {«*»<{«*> I • (10.3) 

For this operator it follows from Eq. (10.1) and its 
Hermitian adjoint that the correlation functions reduce 
to the factorized form 

n 2n 

G«. . .„ .°°(*i - • -afcO-II V f o ) I I S„(x,). (10.4) 
?=1 Z=n+1 

In other words, the field which corresponds to the state 
| {a>k}) satisfies the conditions for full coherence accord­
ing to the definition3 given earlier. 

I t is worth noting that the state | {«*.}) is not the 
only one which leads to the set of correlation functions 
(10.4). Indeed, let us consider a state which corresponds 
not to the amplitudes {«&}, but to a set {ei<pak} which 
differs by a common phase factor (i.e., <p is real and 
independent of k). Then the corresponding eigenvalue 
function becomes ei<p8>(rt), but such a change leaves the 
correlation functions (10.4) unaltered. I t is clear from 
this invariance property of the correlation functions 
that certain mixtures of the coherent states also lead to 
the same set of functions. Thus, if | {a*;}) is the state 
defined by Eq. (10.1), and £(<p) is any real-valued 
function of <p normalized in the sense 

/.2TT 

/ £(<p)d<p=l, (10.5) 
Jo 

we see that the density operator 

p = I £(<p)\{e^ak})({e^ak}\dcp (10.6) 
Jo 

leads for all choices of £(<p) to the set of correlation 
functions (10.4). Such a density operator is, of course, 
a special case of the general form (9.12), one which 
corresponds to an over-all uncertainty in the phase of 
the {a&}. The particular choice £(<p)= (2w)~\ which 
corresponds to complete ignorance of the phase, repre­
sents the usual state of our knowledge about high-
frequency fields. We have been careful, therefore, to 
define coherence in terms of a set of correlation functions 
which are independent of the over-all phase. 

Since nonstationary fields of many sorts can be 
represented by means of eigenvalue functions, it 
becomes a simple matter to construct corresponding 
quantum states. As an illustration we may consider the 
example of an amplitude-modulated plane wave. For 
this purpose we make use of the particular set of mode 
functions defined by Eq. (2.9). Then if the carrier wave 
has frequency w and the modulation is periodic and has 
frequency fw where 0 < f < 1 , we may write an appro­
priate eigenvalue function as 

ffaa \1/2 

S(rO = *( 1 «(X)o?k 
\2L3 / 

X { l + M " c o s [ r ( k - r ~ o ) 0 - 5 ] } ^ ( k - r - u f ) . (10.7) 
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When this expression is expanded in plane-wave modes 
it has only three nonvanishing amplitude coefficients. 
These are a* itself and the two sideband amplitudes 

ak(1+r) = iM(l+f)-1 /2e-%k . 

The coherent state which corresponds to the modulated 
wave may be constructed immediately from the know­
ledge of these amplitudes. In practice, of course, we will 
not often know the phase of «k, and so the wave should 
be represented not by a single coherent state, but by a 
mixture of the form (10.6). Representations of other 
forms of modulated waves may be constructed similarly. 

Incoherent fields, or the broad class of fields for 
which the correlation functions do not factorize, must 
be described by means of density operators which are 
more general in their structure than those of Eqs. (10.3) 
or (10.6). To illustrate the form taken by the correlation 
functions for such cases we may suppose the field to be 
described by the P representation of the density 
operator. Then the first-order correlation function is 
given by 

GM/1>(ri,rV)= fp({ak}) Z i*(«co01/2«*M*W«*',(rO 
J k,k' 

Xa*V« i (w<-"' l ' )II.tftti. (10.9) 
i 

Fields for which the P representation is inconveniently 
singular may, as we have noted earlier, always be 
described by means of analytic functions R({ak*},{J3k}) 
and corresponding density operators of the form (9.5). 
When that form of density operator is used to evaluate 
the first-order correlation function we find 

G ^ ( r / , r T ) = / 22({a**},{Ab» E £*(«'a>")1/8 

J k',k" 

XUePf'idMdvifa), (10.10) 
i 

where the differentials dix{ai) and d/x(/3j) are those 
defined by Eq. (5.14). The higher order correlation 
functions are given by integrals analogous to (10.9) and 
(10.10). Their integrands contain polynomials of the 
2nth degree in the amplitude variables ak and /3** in 
place of the quadratic forms which occur in the first-
order functions. 

The energy spectrum of a radiation field is easily 
derived from a knowledge of its first-order correlation 
function. If we return for a moment to the expansion 
(2.19) for the positive-frequency field operator, and 
write the negative-frequency field as its Hermitian 

adjoint, we see that these operators obey the identity 

2fE^(rO-E<+>(r/0* 

— ̂ fiuajjak exppto (/—/')]• (10.11) 
k 

If we take the statistical average of both sides of this 
equation we may write the resulting relation as 

£ /Gw»>(rt ,r i0A=iEM»*>exp[««(/--O], (10.12)-" 
(i J k 

where (nk) is the average number of photons in the jfeth 
mode. The Fourier representation of the volume integral 
of Z)/*G>M(1) therefore identifies the energy spectrum 
fuo(nk) quite generally. 

For fields which may be represented by stationary 
density operators, it becomes still simpler to extract the 
energy spectrum from the correlation function. For such 
fields the weight function P({ak}) depends only on the 
absolute values of the ak, so that we have 

fp(K})a^V'II^^=(|^|2)6^-

= <»*'>«*'*». (10.13) 

By using Eq. (10.9) to evaluate the correlation function, 
and specializing to the case of plane-wave modes, we 
then find 

£ G^(rt,rt>) = ilr* £ *co<»kiXy-<«-«'>, (10.14) 

in which we have explicitly indicated the role of the 
polarization index X. If the volume which contains the 
field is sufficiently large in comparison to the wave­
lengths of the excited modes, the sum over the modes 
in Eq. (10.14) may be expressed as an integral over k 
space CC&—•>fLz(2ir)-zdk~]. By defining an energy 
spectrum for the quanta present (i.e., an energy per 
unit interval of w) as 

ze;(co)=(27r)-3M3E j(nk,x)dttk, (10.15) 

where dti* is an element of solid angle in k space, we 
may then rewrite Eq. (10.14) in the form 

E 6 / ) ( r i , r i 0 = i f w(«y-<*-''><fo. (10.16) 
M Jo 

With the understanding that w(o>) = 0 for w <0, we may 
extend the integral over w from — oo to oo. It is then 
clear that the relation (10.16) may be inverted to ex­
press the energy spectrum as the Fourier transform of 
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the time-dependent correlation function, 

1 r00 

w ( « ) = - / EGM M^(rO,r0e*- '* v (10.17) 
W-oo M 

A pair of relations analogous to Eqs. (10.16) and 
(10.17), and together called the Wiener-Khintchine 
theorem, has long been of use in the classical theory of 
random fields.21 The relations we have derived are, in a 
sense, the natural quantum mechanical generalization 
of the Wiener-Khintchine theorem. All we have assumed 
is that the field is describable by a stationary form of 
the P representation of the density operator. The proof 
need not, in fact, rest upon the use of the P representa­
tion since we can construct a corresponding statement 
in terms of the more general representation (9.5). 

Stationary fields, according to Eq. (6.10), are 
represented by entire functions R = &({ak*pk}), i.e., 
functions which depend only on the set of products 
cthfih* For such fields, then, the integral over the a and (3 
planes which is required in Eq. (10.10) takes the form 

<ft/a*">= J &({ak*pk})pk>*ak» U e^idlx{ai)dlx{fil). 

(10.18) 

Since the range of integration of each of the a and /5 
variables covers the entire complex plane, this integral 
cannot be altered if we change the signs of any of the 
variables. If, however, we replace the particular 
variables aw and fik" by — ak>> and —fik>> the integral 
is seen to reverse in sign, unless we have 

<j8^*a*»> = ^*»</S*'W>. (10.19) 

The average {&kak), we may note from Eqs. (5.11) and 
(6.5), is just the mean number of quanta in the kth 
mode, 

{$kak) = tx{pa\ak} = (nk). (10.20) 

We have thus shown that the general expression (10.10) 
for the first-order correlation function always satisfies 
Eq. (10.14) when the field is described by a stationary 
density operator. The derivation of the equations 
relating the energy spectrum to the time-dependent 
correlation function then proceeds as before. 

The simplest and most universal example of an 
incoherent field is the type generated by superposing 
the outputs of stationary sources. We have shown in 
some detail in Sec. VIII that as the number of sources 
which contribute to the excitation of a single mode 
increases, the density operator for the mode takes on a 
Gaussian form in the P representation. I t is not difficult 
to derive an analogous result for the case of sources 

21 The Wiener-Khintchine theorem is usually expressed in terms 
of cosine transforms since it deals with a real-valued correlation 
function for the classical field E, rather than a complex one for 
the fields E (± ) . The complex correlation functions are considerably 
more convenient to use for quantum mechanical purposes, as is 
shown in Ref. 3. 

which excite many modes at once. We shall suppose 
that the sources (j= 1 • • • N) are essentially identical, 
and that their contributions to the excitation are 
described by a weight function p({<xjk}). The weight 
function P({ak}) for the superposed fields is then given 
by the convolution theorem as 

i>({«*}) = f I I ^ L - Ilajk)flp({ajk}) HiPajk. 
J k \ y=i / /=i k 

(10.21) 

Since the individual sources are assumed to be sta­
tionary, the function p({ajk}) will only depend on the 
variables ajk through their absolute magnitudes, \ajk\. 

The derivation which leads from Eq. (10.21) to a 
Gaussian asymptotic form for P({ak}) is so closely 
parallel to that of Eqs. (8.1)-(8.8) that there is no need 
to write it out in detail. The argument makes use of 
second-order moments of the function p which may, 
with the same type of vector notation used previously, 
be written as 

<«*«*')= / «*«*'/>({«*}) I I d2ai. (10.22) 

The stationary character of the function p implies that 
such moments vanish for k^k''. With this observation, 
we may retrace our earlier steps to show that the many-
dimensional Fourier transform of P takes the form of a 
product of Gaussians, one for each mode and each 
similar in form to that of Eq. (8.6). I t then follows 
immediately that the weight function P for the field as 
a whole is given by a product of Gaussian factors each 
of the form of Eq. (8.8). We thus have 

1 
P({ak}) = U~ 6rl«*l2/<»*>, (10.23) 

* w(nk) 

where (nk) is the average number of photons present in 
the &th mode when the fields are fully superposed. One 
of the striking features of this weight function is its 
factorized form. I t is interesting to remember, therefore, 
that no assumption of factorizability has been made 
regarding the weight functions p which describe the 
individual sources. These sources may, indeed, be ones 
for which the various mode amplitudes are strongly 
coupled in magnitude. I t is the stationary property of 
the sources which leads, because of the vanishing of the 
moments (10.22) for k^k'', to the factorized form for 
the weight function (10.23). 

The density operator which corresponds to the 
Gaussian weight function (10.23) evidently describes 
an ideally random sort of excitation of the field modes. 
We may reasonably surmise that it applies, at least as a 
good approximation, to all of the familiar sorts of 
incoherent sources in laboratory use. I t is clear, in 
particular, from the arguments of Sec. VII that the 
Gaussian weight function describes thermal sources 
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correctly. The substitution of the Planck distribution 
(nk) = lexp(ho)k/KT)-lJ-1 into Eq. (10.23) leads to the 
density operator for the entire thermal radiation field. 
To the extent that the Gaussian weight function (10.23) 
may describe radiation by a great variety of incoherent 
sources there will be certain deep-seated similarities in 
the photon fields generated by all of them. One may, 
for example, think of these sources all as resembling 
thermal ones and differing from them only in the 
spectral distributions of their outputs. As a way of 
illustrating these similarities we might imagine passing 
blackbody radiation through a filter which is designed 
to give the spectral distribution of the emerging light a 
particular line profile. We may choose this artificial line 
profile to be the same as that of some true emission line 
radiated, say, by a discharge tube. We then ask whether 
measurements carried out upon the photon field can 
distinguish the true emission-line source from the 
artificial one. If the radiation by the discharge tube is 
described, as we presume, by a Gaussian weight func­
tion, it is clear that the two sources will be indistin­
guishable from the standpoint of any photon counting 
experiments. They are equivalent sorts of narrow-band, 
quantum-mechanical noise generators. 

I t is a simple matter to find the correlation functions 
for the incoherent fields2 described by the Gaussian 
weight function (10.23). If we substitute this weight 
function into the expansion (10.9) for the first-order 
correlation function we find 

G„w(ri,rt') = £ E fumk;{x)uU^){nk)e^^^. (10.24) 
k 

When the mode functions u&(r) are the plane waves of 
Eq. (2.9), and the volume of the system is sufficiently 
large, we may write the correlation function as the 
integral 

tic r 
G ^ f o r t ' H / £ «M(X)VX)<»k.x>* 

X e x p { - i | > ( r - r ' ) - co (* -* ' ) ]}<* , (10.25) 

in which the index X again labels polarizations. To find 
the second-order correlation function defined by 
Eq. (10.2) we may write it likewise as an expansion in 
terms of mode functions. The only new moments of the 
weight function which we need to know are those given 
by <|a*|4>==2<|a*|2>2 = 2<»*>2. We then find that the 
second-order correlation function may be expressed in 
terms of the first-order function as 

+GWA™ (*i ,*0G«M
a ) (a*,*.). (10.26) 

I t is easily shown that all of the higher order correlation 
functions as well reduce to sums of products of the first-
order function. The nth-order correlation function may 

be written as 

Gn • • -M2n(n) (*1 * * ' # « , * «+ l ' ' * *2n) = £ I I G>,r, ( 1 ) ( a / , ? / ) , 

(10.27) 

where the indices v, and the coordinates y$ for j = 1 • • • n 
are a permutation of the two sets jan+i • • • ^2 n and 
xn+i • - • X2n, and the sum is carried out over all of the 
n\ permutations. One of the family resemblances which 
links all fields represented by the weight function 
(10.23) is that their properties may be fully described 
through knowledge of the first-order correlation 
function. 

The fields which have traditionally been called 
coherent ones in optical terminology are easily de­
scribed in terms of the first-order correlation function 
given by Eq. (10.25). Since the light in such fields is 
accurately collimated and nearly monochromatic, the 
mean occupation number (wk.x) vanishes outside a small 
volume of k-space. The criterion for accurate coherence 
is ordinarily that the dimensions of this volume be 
extremely small in comparison to the magnitude of k. 
I t is easily verified, if the field is fully polarized, and the 
two points (r}t) and (r',/') are not too distantly 
separated, that the correlation function (10.25) falls 
approximately into the factorized form of Eq. (2.4). 
That is to say, fields of the type we have described 
approximately fulfill the condition for first-order 
coherence.3 I t is easily seen, however, from the structure 
of the higher order correlation functions that these 
fields can never have second or higher order coherence. 
In fact, if we evaluate the function Gin) given by 
Eq. (10.27) for the particular case in which all of the 
coordinates are set equal, Xi= • • • =X2n=x, and all of 
the indices as well, AH= • • • =Ai2n=M> we find the result 

GM . . . / n )(s- • •*,*• • -aO = »CGMM(1)(*,*)]*. (10.28) 

The presence of the coefficient n! in this expression is 
incompatible with the factorization condition (10.4) for 
the correlation functions of order n greater than one. 
The absence of second or higher order coherence is thus 
a general feature of stationary fields described by the 
Gaussian weight function (10.23). There exists, in other 
words, a fundamental sense in which these fields remain 
incoherent no matter how monochromatic or accurately 
collimated they are. We need hardly add that other 
types of fields such as those generated by radio trans­
mitters or masers may possess arbitrarily high orders 
of coherence. 

During the completion of the present paper a note by 
Sudarshan12 has appeared which deals with some of the 
problems of photon statistics that have been treated 
here.22 Sudarshan has observed the existence of what 

22 In an accompanying note, L. Mandel and E. Wolf [Phys. 
Rev. Letters 10, 276 (1963)] warmly defend the classical approach 
to photon problems. Some of the possibilities and fundamental 
limitations of this approach should be evident from our earlier 
work. We may mention that the "implication" they draw from 
Ref. 1 and disagree with cannot be validly inferred from any 
reading of that paper. 
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we have called the P representation of the density 
operator and has stated its connection with the repre­
sentation based on the ^-quantum states. To that 
extent, his work agrees with ours in Sees. VII and IX. 
He has, however, made a number of statements which 
appear to attach an altogether different interpretation 
to the P representation. In particular, he regards its 
existence as demonstrating the "complete equivalence" 
of the classical and quantum mechanical approaches to 
photon statistics. He states further that there is a 
"one-to-one correspondence" between the weight func­
tions P and the probability distributions for the field 
amplitudes of classical theory. 

The relation between the P representation and 
classical theory has already been discussed at some 
length in Sees. VII-IX. We have shown there that the 

weight function P(a) is, in general, an intrinsically 
quantum-mechanical structure and not derivable from 
classical arguments. In the limit h—> 0, which corre­
sponds to large amplitudes of excitation for the modes, 
the weight functions P(a) may approach classical 
probability functions as asymptotic forms. Since 
infinitely many quantum states of the field may 
approach the same asymptotic form, it is clear that 
the correspondence between the weight functions P (a) 
and classical probability distributions is not at all 
one-to-one. 
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